开关电源适配器的PCB印制板设计与一般电子线路的印制板设计既有相似之处,也有不同的特点。一般电子线路的印制板设计中提到的布线、布局及铜箔厚度、宽度与通过电流的关系等原则,在开关电源的印制板设计中也同样适用。开关电源中除了常用标准封装的电阻、电容以及集成电路以外,还包含着大量非标准封装的电感、高频变压器、散热器、大容量高压电解电容、大功率二极管、三极管、各种滤波元件等等。这些元件的封装要在印制板设计之前,可以根据厂家提供的安装外形尺寸或者实物的实际测量确定。印制板设计时,要考虑到干扰对系统的影响,将电路的模拟部分和数字部分的电路严格分开,对核心电路重点防护,将系统地线环绕,并布线尽可能粗,电源增加滤波电路,采用DC-DC隔离,信号采用光电隔离,设计隔离电源,分析容易产生干扰的部分(如时钟电路、通讯电路等)和容易被干扰的部分(如模拟采样电路等),对这两种类型的电路分别采取措施。对于干扰元件采取抑制措施,对敏感元件采取隔离和保护措施,并且将它们在空间和电气上拉开距离。在印制板设计时,还要注意元器件放置要远离印制板边沿,这对防护空气放电是有利的。
开关电源适配器的印制板设计中要特别注意如下问题:
1.元器件布局问题
2.地线布线问题
3.取样点选择问题
4.高压回路与低压回路隔离间距问题
开关电源适配器中的元件布局,重点考虑主电路关键器件。开关电源中输入滤波高压电容、高频变压器的一次绕组和开关功率管组成一个较大脉冲回路。高频变压器的二次绕组、续流或者整流二极管和输出滤波电容组成另一个较大脉冲电流回路。这两个回路要布局紧凑,铜箔走线短捷;这样可以减小泄露电感,从而降低吸收回路的损耗,提高电源的效率。
开关电源适配器的地线回路,不论是一次回路还是二次回路,都要有很大的脉冲电流通过。尽管地线通常设计得比较宽,但还会造成较大的电压降落,从而影响控制电路的性能。地线的布线要考虑电流密度的分布和电流的流向,避免地线上的压降被引入控制回路,造成负载调整率下降。
开关电源适配器中取样点选择尤为重要,在取样回路中,既要考虑负载电流产生的压降,也要考虑整流或者续流电路产生的脉冲电流对取样的影响。取样点应该尽量选择在输出端子的两端,以便得到最好的负载调整率。
走线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出的最小线间距达到0.1mm,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在过波峰焊接过程中出现“连锡”短路现象。这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。
最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。
方法一:线路板开槽的方法适用于一些间距不够的场合,顺便提一下,该法也常用来作为保护放电间隙,常见于开关电源适配器高压回路与电压回路隔离的地方。该法在模块电源中得到了广泛的应用,在灌封的条件下可获得很好的效果。
方法二:垫绝缘纸,可采用青壳纸、聚脂膜、聚四氟乙烯定向膜等绝缘材料。一般通用电源用青壳纸或聚脂膜垫在线路板于金属机壳间,这种材料有机械强度高,有一定抗潮湿的能力。聚四氟乙烯定向膜由于具有耐高温的特性在模块电源中得到广泛的应用。在元件和周围导体间也可垫绝缘薄膜来提高绝缘抗电性能。
走线电流密度:现在多数电子线路采用绝缘板缚铜构成。常用线路板铜皮厚度为35μm,走线可按照1A/mm经验值取电流密度值,具体计算可参见教科书。为保证走线机械强度原则线宽应大于或等于0.3mm。铜皮厚度为70μm 线路板也常见于开关电源,那么电流密度可更高些。
模块电源行列也有部分产品采用多层板,主要便于集成变压器电感等功率器件,优化接线、功率管散热等。具有工艺美观一致性好,变压器散热好的优点,但其缺点是成本较高,灵活性较差,仅适合于工业化大规模生产。
单面板,市场流通通用开关电源适配器几乎都采用了单面线路板,其具有低成本的优势,在设计,及生产工艺上采取一些措施亦可确保其性能。
为保证良好的焊接机械结构性能,单面板焊盘应稍微大一些,以确保铜皮和基板的良好缚着力,而不至于受到震动时铜皮剥离、断脱。一般焊环宽度应大于 0.3mm。焊盘孔直径应略大于器件引脚直径,但不宜过大,保证管脚与焊盘间由焊锡连接距离最短,盘孔大小以不妨碍正常查件为度,焊盘孔直径一般大于管脚 直径0.1-0.2mm。多引脚器件为保证顺利查件,也可更大一些。单面板上元器件应紧贴线路板。需要架空散热的器件,要在器件与线路板之间的管脚上加套管,可起到支撑器件和增加绝缘的双重作用,要最大限度减少或避免外力 冲击对焊盘与管脚连接处造成的影响,增强焊接的牢固性。线路板上重量较大的部件可增加支撑连接点,可加强与线路板间连接强度,如变压器,功率器件散热器。
双面板焊盘由于孔已作金属化处理强度较高,焊环可比单面板小一些,焊盘孔孔径可 比管脚直径略微大一些,因为在焊接过程中有利于焊锡溶液通过焊孔渗透到顶层焊盘,以增加焊接可靠性。如宽度不够,一般可采用在走线上镀锡增加厚度进行解决,其方法有好多种。
1.将走线设置成焊盘属性,这样在线路板制造时该走线不会被阻焊剂覆盖,热风整平时会被镀上锡。
2.在布线处放置焊盘,将该焊盘设置成需要走线的形状,要注意把焊盘孔设置为零。
3.在阻焊层放置线,此方法最灵活,但不是所有线路板生产商都会明白你的意图,需用文字说明。在阻焊层放置线的部位会不涂阻焊剂
线路镀锡的几种方法如上。一般可采用细长条镀锡宽度在1~1.5mm,长度可根据线路来确定,镀锡部分间隔0.5~1mm 双面线路板为布局、走线提供了很大的选择性,可使布线更趋于合理。关于接地,功率地与信号地一定要分开,两个地可在滤波电容处汇合,以避免大脉冲电流通过 信号地连线而导致出现不稳定的意外因素,信号控制回路尽量采用一点接地法。
电压反馈取样,为避免大电流通过走线的影响,反馈电压的取样点一定要放在电源输出最末梢,以提高整机负载效应指标。
走线从一个布线层变到另外一个布线层一般用过孔连通,不宜通过器件管脚焊盘实现,因为在插装器件时有可能破坏这种连接关系,还有在每1A电流通过时,至少应有2个过孔,过孔孔径原则要大于0.5mm,一般0.8mm可确保加工可靠性。
最近几年,随着多层线路板在开关电源适配器电路中应用,使得印制线路变压器成为可能,由于多层板,层间距较小,也可以充分利用变压器窗口截面,可在主线路板上再加一到两片由多层板组成的印制线圈达到利用窗口,降低线路电流密度的目的,由于采用印制线圈,减少了人工干预,变压器一致性好,平面结构,漏感低,偶合好。开启式磁芯,良好的散热条件。由于其具有诸多的优势,有利于大批量生产,所以得到广泛的应用。